菜单导航

深度学习“奠基人”特伦斯:人工智能算法框架可被科学家掌控

作者: 仙阁故事网 发布时间: 2020年03月25日 16:39:08

  1989年,特伦斯·谢诺夫斯基在MIT以苍蝇的视觉网络迭代发展举例,将当时并不被看好的神经网络概念普及给支持逻辑计算程序的教员们。到今天,“深度神经网络”已成为人工智能的核心框架,为大众口口相传。

  这是大自然经过上亿年发展给人类带来的智慧,也意味着科学发展需经历几十年甚至百年后,才得以更智能的姿态普惠日常。

  今天的人工智能也是如此。经历过20世纪前期关于发展路径的分歧和摸索后,科学家们终于意识到,基于脑科学的研究,将成为AI的助推器。近年来,包括中国、美国、欧盟、日韩等国家和经济体正将这作为重要工程推进。

  这一定程度源于业界对AI“不可解释性”的担忧。尚处在发展早期的人工智能,却无法为人类所解释其运作原理,将必然阻碍AI的长远发展。

  不过特伦斯·谢诺夫斯基却不这么看,在近日接受21世纪经济报道记者采访时他明确表示,相比AI,人脑被头骨层层包裹,里面一片黑暗,才是真正的“黑盒子”,但AI背后的算法框架其实可为数学家们掌控。现代科学家们正在研究,在未来十年一个周期的时间内,如何助对脑科学的研究,更好让AI落地。我们现在还处在第一步而已。

  深度学习路径的由来

  人工智能技术的诞生要追溯到20世纪50年代,当时学界对于如何构建人工智能产生了两种路径分歧。一类观点主张基于逻辑和计算机程序,另一类则主张直接从数据中学习。

  前者曾主导AI发展早期的数十年间研究和应用,但后者才是目前大众所知晓的AI技术实现路径。

  特伦斯·谢诺夫斯基现在是美国“四院院士”、美国索尔克生物研究所计算神经生物学实验室主任,也是人工智能发展早期支持后者观点的少数人之一。即使曾经历美国政府机构大幅缩减人工智能资金投入,却并未影响到他所在观点方的探索之路。

  在前述特伦斯对MIT教员的探讨过程中,他指出,苍蝇眼中的视觉网络进化了数亿年,其视觉算法嵌入了本身的网络。这也是为什么可以利用苍蝇眼神经回路的布线图信息流对视觉系统进行逆向工程,但为什么不能在数字计算机上这样做,因为硬件本身需要软件来制定要解决什么问题。

  这也是通用设备与专用设备的差异性所决定。此后,一批不依赖于数字逻辑构建搭建的机器人开始有所发展。

  到今天,我们大多从AlphaGo在两次大型对战中战胜世界级冠军选手的故事了解到其得以发展下来的原委。Google旗下团队通过让机器学习围棋的多样化棋局数作为基础数据,AlphaGo除了具备评估盘局的深度学习网络,还有解决时间信用分配问题的系统,通过这些得以评估落子的行动顺序。

  在接受采访时,特伦斯提到此后出现的“取代人类”相关质疑。“柯洁在输掉比赛后提到,人类学了这么多年才懂得如何下围棋,但AlphaGo教会我,其实我对围棋一无所知。但难道机器人战胜人类之后,人们就不下围棋了?并不是。”他指出,AlphaGo实际上在帮助人类懂得新的棋法,由此一来,人类也可以变成更好的棋手。“AlphaGo没有要取代人类,实际上在推进人类变得更好。”

  仍处在初级阶段

  但现阶段的AI真的能开始教人类了吗?其实还没有。

  纵观科学技术的发展历程,从基础科学,到真正实现商业化,都至少经历了50年时间。而目前人工智能的应用还是基于30年前完成的基础研究而来。

  这意味着我们处在人工智能时代非常初级的阶段,也被称为是“弱人工智能时期”。